383 research outputs found

    Global patterns and drivers of avian extinctions at the species and subspecies level

    Get PDF
    Birds have long fascinated scientists and travellers, so their distribution and abundance through time have been better documented than those of other organisms. Many bird species are known to have gone extinct, but information on subspecies extinctions has never been synthesised comprehensively. We reviewed the timing, spatial patterns, trends and causes of avian extinctions on a global scale, identifying 279 ultrataxa (141 monotypic species and 138 subspecies of polytypic species) that have gone extinct since 1500. Species extinctions peaked in the early 20th century, then fell until the mid 20th century, and have subsequently accelerated. However, extinctions of ultrataxa peaked in the second half of the 20th century. This trend reflects a consistent decline in the rate of extinctions on islands since the beginning of the 20th century, but an acceleration in the extinction rate on continents. Most losses (78.7% of species and 63.0% of subspecies) occurred on oceanic islands. Geographic foci of extinctions include the Hawaiian Islands (36 taxa), mainland Australia and islands (29 taxa), the Mascarene Islands (27 taxa), New Zealand (22 taxa) and French Polynesia (19 taxa). The major proximate drivers of extinction for both species and subspecies are invasive alien species (58.2% and 50.7% of species and subspecies, respectively), hunting (52.4% and 18.8%) and agriculture, including non-timber crops and livestock farming (14.9% and 31.9%). In general, the distribution and drivers of subspecific extinctions are similar to those for species extinctions. However, our finding that, when subspecies are considered, the extinction rate has accelerated in recent decades is both novel and alarming

    Tracking extinction risk trends and patterns in a mega-diverse country: A Red List Index for birds in Colombia.

    Get PDF
    Monitoring trends in the extinction risk of species is important for tracking conservation effectiveness. The Red List index (RLI) reflects changes in aggregate extinction risk for sets of species over time (a value of zero means that all species are extinct, a value of one means that all species are categorized as Least Concern). We calculated the first national RLI for birds in Colombia for the period 2002-2016, and disaggregated indices by ecosystems, regions, and species groups. Overall, the status of birds in Colombia has moderately deteriorated during 2002-2016, declining by 0.0000714% per year (the global RLI for birds declined by 0.0297% per year). High Andean forest, paramo, and freshwater are the ecosystems in worst condition. The two regions with the greatest avian diversity contrasted: the Andes has the lowest RLI, and the Amazon the highest. Among species groups, gamebirds, parrots, large frugivores, and forest raptors are the most threatened. Habitat loss from expansion of illicit crops and population declines from hunting were the most important threats. Agricultural expansion, invasive alien animal species, illegal logging and illegal mining are significant threats for some species. Tracking species' extinction risk is important in a country with the highest bird species richness in the world, dynamic spatial patterns of habitat loss, and high levels of endemism. Recent developments provide reasons for both hope and despair. In 2016, a peace agreement ended 50 years of armed conflict. New opportunities for biodiversity conservation, local development based on bird-watching tourism, and advancement in scientific knowledge of birds now occur alongside dramatic increases in deforestation. These new conservation opportunities and challenges provide strong motivation to take advantage of the fact that the overall risk of extinction of birds in Colombia is still relatively low and stable. Effective action is urgently needed while there still is the opportunity to prevent extinctions and safeguard species, particularly those in higher risk categories

    Identifying Priority Areas for Conservation: A Global Assessment for Forest-Dependent Birds

    Get PDF
    Limited resources are available to address the world's growing environmental problems, requiring conservationists to identify priority sites for action. Using new distribution maps for all of the world's forest-dependent birds (60.6% of all bird species), we quantify the contribution of remaining forest to conserving global avian biodiversity. For each of the world's partly or wholly forested 5-km cells, we estimated an impact score of its contribution to the distribution of all the forest bird species estimated to occur within it, and so is proportional to the impact on the conservation status of the world's forest-dependent birds were the forest it contains lost. The distribution of scores was highly skewed, a very small proportion of cells having scores several orders of magnitude above the global mean. Ecoregions containing the highest values of this score included relatively species-poor islands such as Hawaii and Palau, the relatively species-rich islands of Indonesia and the Philippines, and the megadiverse Atlantic Forests and northern Andes of South America. Ecoregions with high impact scores and high deforestation rates (2000–2005) included montane forests in Cameroon and the Eastern Arc of Tanzania, although deforestation data were not available for all ecoregions. Ecoregions with high impact scores, high rates of recent deforestation and low coverage by the protected area network included Indonesia's Seram rain forests and the moist forests of Trinidad and Tobago. Key sites in these ecoregions represent some of the most urgent priorities for expansion of the global protected areas network to meet Convention on Biological Diversity targets to increase the proportion of land formally protected to 17% by 2020. Areas with high impact scores, rapid deforestation, low protection and high carbon storage values may represent significant opportunities for both biodiversity conservation and climate change mitigation, for example through Reducing Emissions from Deforestation and Forest Degradation (REDD+) initiatives

    Mapping functional traits: comparing abundance and presence-absence estimates at large spatial scales

    Get PDF
    Efforts to quantify the composition of biological communities increasingly focus on functional traits. The composition of communities in terms of traits can be summarized in several ways. Ecologists are beginning to map the geographic distribution of trait-based metrics from various sources of data, but the maps have not been tested against independent data. Using data for birds of the Western Hemisphere, we test for the first time the most commonly used method for mapping community trait composition – overlaying range maps, which assumes that the local abundance of a given species is unrelated to the traits in question – and three new methods that as well as the range maps include varying degrees of information about interspecific and geographic variation in abundance. For each method, and for four traits (body mass, generation length, migratory behaviour, diet) we calculated community-weighted mean of trait values, functional richness and functional divergence. The maps based on species ranges and limited abundance data were compared with independent data on community species composition from the American Christmas Bird Count (CBC) scheme coupled with data on traits. The correspondence with observed community composition at the CBC sites was mostly positive (62/73 correlations) but varied widely depending on the metric of community composition and method used (R2: 5.6×10−7 to 0.82, with a median of 0.12). Importantly, the commonly-used range-overlap method resulted in the best fit (21/22 correlations positive; R2: 0.004 to 0.8, with a median of 0.33). Given the paucity of data on the local abundance of species, overlaying range maps appears to be the best available method for estimating patterns of community composition, but the poor fit for some metrics suggests that local abundance data are urgently needed to allow more accurate estimates of the composition of communities

    Global Trends in the Status of Bird and Mammal Pollinators

    Get PDF
    Biodiversity is declining, with direct and indirect effects on ecosystem func-tions and services that are poorly quantified. Here, we develop the first globalassessment of trends in pollinators, focusing on pollinating birds and mam-mals. A Red List Index for these species shows that, overall, pollinating birdand mammal species are deteriorating in status, with more species movingtoward extinction than away from it. On average, 2.5 species per year havemoved one Red List category toward extinction in recent decades, represent-ing a substantial increase in the extinction risk across this set of species. Thismay be impacting the delivery of benefits that these species provide to people.We recommend that the index be expanded to include taxonomic groups thatcontribute more significantly to pollination, such as bees, wasps, and butter-flies, thereby giving a more complete picture of the state of pollinating speciesworldwide

    Crop expansion and conservation priorities in tropical countries

    Get PDF
    Expansion of cropland in tropical countries is one of the principal causes of biodiversity loss, and threatens to undermine progress towards meeting the Aichi Biodiversity Targets. To understand this threat better, we analysed data on crop distribution and expansion in 128 tropical countries, assessed changes in area of the main crops and mapped overlaps between conservation priorities and cultivation potential. Rice was the single crop grown over the largest area, especially in tropical forest biomes. Cropland in tropical countries expanded by c. 48,000 km2 per year from 1999–2008. The countries which added the greatest area of new cropland were Nigeria, Indonesia, Ethiopia, Sudan and Brazil. Soybeans and maize are the crops which expanded most in absolute area. Other crops with large increases included rice, sorghum, oil palm, beans, sugar cane, cow peas, wheat and cassava. Areas of high cultivation potential—while bearing in mind that political and socio-economic conditions can be as influential as biophysical ones—may be vulnerable to conversion in the future. These include some priority areas for biodiversity conservation in tropical countries (e.g., Frontier Forests and High Biodiversity Wilderness Areas), which have previously been identified as having ‘low vulnerability’, in particular in central Africa and northern Australia. There are also many other smaller areas which are important for biodiversity and which have high cultivation potential (e.g., in the fringes of the Amazon basin, in the Paraguayan Chaco, and in the savanna woodlands of the Sahel and East Africa). We highlight the urgent need for more effective sustainability standards and policies addressing both production and consumption of tropical commodities, including robust land-use planning in agricultural frontiers, establishment of new protected areas or REDD+ projects in places agriculture has not yet reached, and reduction or elimination of incentives for land-demanding bioenergy feedstock

    Adapting global biodiversity indicators to the national scale: A Red List Index for Australian birds

    Get PDF
    The Red List Index (RLI), which uses information from the IUCN Red List to track trends in the projected overall extinction risk of sets of species, is among the indicators adopted by the world’s governments to assess performance under the Convention on Biological Diversity and the United Nations Millennium Development Goals. For greatest impact, such indicators need to be measured and used at a national scale as well as globally. We present the first application of the RLI based on assessments of extinction risk at the national scale using IUCN’s recommended methods, evaluating trends in the status of Australian birds for 1990–2010. We calculated RLIs based on the number of taxa in each Red List category and the number that changed categories between assessments in 1990, 2000 and 2010 as a result of genuine improvement or deterioration in status. A novel comparison between trends at the species and ultrataxon (subspecies or monotypic species) level showed that these were remarkably similar, suggesting that current global RLI trends at the species level may also be a useful surrogate for tracking losses in genetic diversity at this scale, for which no global measures currently exist. The RLI for Australia is declining faster than global rates when migratory shorebirds and seabirds are included, but not when changes resulting from threats in Australia alone are considered. The RLI of oceanic island taxa has declined faster than those on the continent or on continental islands. There were also differences in the performance of different jurisdictions within Australia

    Global inequities and political borders challenge nature conservation under climate change

    Get PDF
    Underlying sociopolitical factors have emerged as important determinants of wildlife population trends and the effectiveness of conservation action. Despite mounting research into the impacts of climate change on nature, there has been little consideration of the human context in which these impacts occur, particularly at the global scale. We investigate this in two ways. First, by modeling the climatic niches of terrestrial mammals and birds globally, we show that projected species loss under climate change is greatest in countries with weaker governance and lower Gross Domestic Product, with loss of mammal species projected to be greater in countries with lower CO2 emissions. Therefore, climate change impacts on species may be disproportionately significant in countries with lower capacity for effective conservation and lower greenhouse gas emissions, raising important questions of international justice. Second, we consider the redistribution of species in the context of political boundaries since the global importance of transboundary conservation under climate change is poorly understood. Under a high-emissions scenario, we find that 35% of mammals and 29% of birds are projected to have over half of their 2070 climatic niche in countries in which they are not currently found. We map these transboundary range shifts globally, identifying borders across which international coordination might most benefit conservation and where physical border barriers, such as walls and fences, may be an overlooked obstacle to climate adaptation. Our work highlights the importance of sociopolitical context and the utility of a supranational perspective for 21st century nature conservation

    Mapping the global potential exposure of soaring birds to terrestrial wind energy expansion

    Get PDF
    The wind energy sector is steadily growing, and the number of wind turbines is expected to expand across large areas of the globe in the near future. While the development of wind energy can contribute to mitigating climate change, it also poses challenges to wildlife, particularly birds, due to increased collision risk with wind turbines. Here we quantify and map potential conflicts between the potential for wind energy development and the distribution of terrestrial soaring birds. We explore the relationship between species traits (including body mass, migration ecology and extinction risk) and exposure to potential wind energy development, and identified areas of potential conflict between wind power production and soaring bird conservation. We considered the full range of each species, as well as separately analyzing the breeding, non-breeding and passage ranges for migratory species. We show that exposure to potential wind energy development is similar for soaring and non-soaring bird species. Within different parts of the range of soaring bird species, passage distributions have significantly higher potential for wind energy development than the full, breeding or non-breeding ranges. Moreover, exposure to potential wind energy development was higher within the ranges of heavier soaring bird species and those that are migratory. We show that areas of conflict between soaring bird conservation and potential wind energy development could be very large, particularly when the passage ranges of soaring bird species are considered. Such areas of potential conflict are largely unprotected. This highlights a risk for soaring birds from potential wind energy development wherever it is not carefully sited in order to minimise environmental impacts.Peer reviewe
    • …
    corecore